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ELASTIC  CONSTANTS  FOR  SUPERPLASTICALLY 

FORMED/DIFFUSION-BONDED  CORRUGATED  SANDWICH CORE 

William L . KO 
Dryden  Flight  Research  Center 

INTRODUCTION 

Since  the  first  successful  application of the  sandwich structure  in  the  British 
all-wood-constructed Mosquito fighter-bomber  aircraft  during World  War  11, the  use 
of sandwich  structural technology  (mainly  metallic) has become widespread  in  aero- 
space  design  (for  example, for wings, wall panels,  webs of beams,  tails, and so 
forth) . 

The  typical  sandwich structure  consists of  two relatively  thin  high  strength face 
sheets  separated  by  and  bonded to a  relatively  thick, low density, low strength  core. 
Thus,  the  sandwich  structure is characterized  by  light weight  and  high flexural 
stiffness. 

. The most extensively  used  sandwich  structure  in  aerospace technology is the 
honeycomb core  sandwich structure, which is usually made of aluminum face sheets 
and an aluminum or titanium honeycomb core. In this  structure, the honeycomb cell 
generatrix is perpendicular to the  face sheet  and,  therefore,  the  bonding between  the 
honeycomb core  and  the face sheet can be achieved  only  by  line  contact.  This is the 
major drawback of this  type of sandwich structure,  because  the  line-contact  bonding 
between  the honeycomb cross  section and  the  face sheet  can  easily  lose  its  bonding 
integrity  as  a  result of corrosion. 

In recent years,  an  entirely new process known as  superplastic forming  with 
concurrent  diffusion  bonding (SPF/DB) has emerged (ref. 1). This  process  involves 
the  fabrication of sandwich structures  by  using  superplastic  materials,  such  as  the 
titanium alloys.  The SPF/DB process  capitalizes on  two natural  characteristics of 
titanium alloys.  The  first is superplasticity, which is the  ability of a  material to 
undergo  large  plastic deformations  (up  to 1000 percent  strain)  at  high  temperatures 
without  localized  thinning (or necking).  Second,  the  alloys  have  the  capacity  for 



solid state  diffusion  bonding,  which is the  joining of the  superplastic  alloys  under 
pressure  at elevated  temperatures without  melting or the  use of bonding  agents. 

Utilizing  the  above two characteristics,  an SPF/DB sandwich  structure  can  be 
fabricated  by diffusion bonding at least  three  superplastic alloy sheets  at  selected 
areas  and  then  superplastically  expanding  apart  the  face  sheets  by  pressure  inside 
the containment (or die  cavity) to give  the  desired  configuration.  This new process 
eliminates  the use of bonding  agents,  and allows surface-contact  bonding  instead of 
line-contact bonding  as  in  the  case of honeycomb sandwich  structures.  Through  this 
new technique,  a  number of new shapes and  symmetries  for  the  sandwich  core become 
possible.  These  include  corrugated  cores,  truss  cores  (the limit case of corrugated 
core), dimpled cores,  and sine-wave  cores  (where  the  axis of corrugation is sinu- 
soidal  in  shape),  which  are  described  in  reference 1; and  egg-carton-like  cores, 
which have  projections  that  are  shaped  like hollow truncated  cones, hollow truncated 
squares, or  hexagonal  pyramids  and are  arranged  in  square or hexagonal arrays 
(refs. 2 and 3 ) .  

The  corrugated,  the  truss, and  the  sine-wave  cores  have  relatively  high out-of- 
plane  bending  stiffness  in  the  direction of the  corrugation  axis,  but  they  have  very 
low out-of-plane bending  stiffness  in  the  direction  transverse  to  the  corrugation 
axis. The  egg-carton-like  cores  have  relatively low flexural  ,stiffness  in  any  in- 
plane  direction.  However, i f  these  cores  are joined  with  face sheets,  the  overall 
stiffness of the  sandwich structure is greatly  enhanced. 

In  most of the SPF/DB sandwich structures, the  sandwich  cores  are  relatively 
flexible  in  the  thickness  direction, and there is usually  a  sharp  angle  at the juncture 
of the face sheet  and  core.  Thus, if the  swelling modes of vibration  (that i s ,  the 
oscillation of the two face sheets  in  opposite  directions)  should  occur  under  aerospace 
service  conditions (for example,  engine  noise,  high  frequency  flutter,  and so forth) , 
these  vibration modes could create  situations  favorable to the formation of fatigue 
cracks at  the face sheet/core  junction  sites,  resulting  in  possible damage to the  face 
sheet/core  bond. 

In order to study  this  problem,  the assumption that  the  sandwich  core is rigid  in 
the  thickness  direction  (which is the  conventional approach to the analysis of sand- 
wich plates) must be  abandoned, and  the  sandwich core must be  treated  as  it is or 
as an  equivalent homogeneous elastic  solid. For  the  latter  case, the  effective elastic 
constants for the  sandwich  core are  needed. 

The  purpose of this  paper is to present formulae and  graphs  for  evaluating  the 
effective elastic  constants for the SPF/DB corrugated  sandwich  core. The paper  also 
discusses  the  relative  structural  advantages  and  disadvantages of this  sandwich  core 
as compared with the  conventional honeycomb sandwich  core. 
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SYMBOLS 

B nondimensional parameter  associated  with  displacement (6) 

b one-half of horizontal  projected  length of circular  arcs and  straight 
diagonal  segments of corrugation  leg 

D bending  stiffness  per  unit width 

d one-half of the  length of straight diagonal  segment of corrugation  leg 

E modulus of elasticity 

F vertical load in  sandwich  thickness  direction,  per  unit width in  x-direction, 
concentrated  at  end  points of corrugation  leg 

f length of corrugation flat  segment 

G shear modulus 

H horizontal load (in  y-direction) , per unit  width in  x-direction,  concentrated 
at  end  points of corrugation  leg 

hc corrugated  core  thickness  (vertical  distance between upper  and lower 
corrugation flat  segment centerlines) 

Q length of one  corrugation  leg 

M bending moment 

P one-half of corrugation  pitch (or half wave length of corrugation) 

R radius of circular  arc segments of corrugation  leg 

S distance  measured  along  corrugation  centerline 

t thickness 

x, y , z Cartesian  coordinates 

Y effective shear  strain of corrugated  core  in  yz-plane 

6 displacement 

& strain 

0 corrugation  angle  (angle between centerline of straight  diagonal segment 
and that of corrugation  flat  segment) 
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V Poisson ratio 

P density 

(J stress 

T - - = - , averaged  shear  stress  in  corrugated  core  in  yz-plane F H  
P C 

\Ir angle  between  tangent to corrugation  leg  centerline and  a  horizontal  line 

GEOMETRY  OF  SANDWICH  PLATE 

Figure 1 shows  an SPF/DB corrugated  core  sandwich  plate.  This  structure is 
formed by  diffusion  bonding  three  superplastic alloy sheets (two face sheets and  one 
core  sheet)  in  selected  areas  (ref. 2 )  and  then  superplastically  expanding  the 
multiple sheet  pack  inside  a  die  cavity  by  using  gas  pressure.  This  structure is 
slightly  different from the conventional corrugated  core  sandwich  structure  because 
the  corrugation  leg  does  not  have  uniform  thickness. Because of superplastic  expan- 
sion, the  diagonal  segment of the  corrugation  leg is always  thinner  than  the flat seg- 
ment (crest or trough) of the  corrugation  leg,  which  has  a  thickness  that is nearly 
the  preexpansion  thickness.  Thus,  the  results  given  by  reference 4 ,  which are  for 
the  corrugation  leg of uniform thickness, cannot be  used to evaluate  the  present 
structure without considerable modification. 

This  report  analyzes only  a  symmetric corrugation  (that i s ,  a  corrugation 
symmetric  with respect  to  the middle surface of the  sandwich  plate).  The element of 
the  corrugation  referred to as the  corrugation  leg is assumed to be made up of 
circular  arc and straight  diagonal  segments of thickness t and of flat  segments of 

thickness t (the  preexpansion  thickness of the  core  sheet). 
C 

f 

ELASTIC  CONSTANTS  FOR  SUPERPLASTICALLY 
FORMED/DIFFUSION-BONDED  CORRUGATED  SANDWICH CORE 

The elastic  constants  evaluated  in  the  following  discussion are  the  effective (or 
averaged)  elastic  constants  for  a homogeneous sandwich  core  equivalant to the  actual 
sandwich core.  This idealization  can be adequate  when  the  sandwich  plate  width 
(normal to the  corrugation  axis) is many times the  corrugation  pitch.  The  analysis 
assumes  that  deformation is infinitesimal and that  there is no  local buckling of the 
sandwich structure. 
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Evaluation of Effective Modulus of Elasticity E x  

and Effective Shear Moduli G and GZx 
XY 

The modulus of elasticity  in  the  x-direction, E and the  shear moduli in  the  xy- 
and zx-planes G and GZx respectively may be obtained by modifying  the results 
given in  reference 4 by  applying  the  rule of mixture to account  for  the  nonuniform 
thickness of the  corrugation  leg.  These  elastic  constants  can  be  expressed  in  the 
forms 

X '  

Xy 

1 t 
E x  = Ec phc [ftf + ( a  - f ) t c ]  = E c  f 

C 

hC 
h t  

+ (Q - f> tc ]  = Gc - c f  
GZX = Gc 2 [ftf 

Q P  Q2 

where  the  last  terms  in  the  equations  are  for  constant volume superplastic deformations 
(neglecting  small  elastic  deformations)  for  which  the  condition ft + ( Q  - f) tc = p t  
holds  and 

f f 

EC 

G C  

P 

hC 

Q 

f 

modulus of elasticity of the  corrugated  core  material 

shear modulus of the  corrugated  core  material 

one-half of corrugation  pitch (or one-half of a  wave length of corrugation) 

corrugated  core  thickness  (vertical  distance between centerlines of the 
upper and  lower corrugation  flat  segments) 

length of one  corrugation  leg 

length of corrugation  flat segment 

For constant volume superplastic deformations the  superplastic  incompressibility 
, condition  used  in  equations-(1), (2) , and (3) may be  used  to  relate  the two corruga- 
' tion leg  thicknesses tc and t in  the forms f 
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or 

where 

b one-half of the  horizontal  projected  length of the  circular  arc  and  straight 
diagonal  segments of the  corrugation  leg 

d one-half of the  length of the  straight diagonal  segment of the  corrugation 
1% 

R radius of circular  arc segment of the  corrugation  leg 

e corrugation  angle  (angle between  the centerline of the  straight diagonal 
segment  and  the centerline of the  corrugation  flat  segment) 

Evaluation of Modulus of Elasticity E Y 

Figure 2 shows  a free body diagram of a  corrugation  leg  subjected to a  horizontal 
loading, H (per  unit width in  the  x-direction) . Neglecting  the Timoshenko beam 
shear deformation of the  corrugation  leg  because of its  thinness,  the  total  horizontal 
displacement of point 0 with respect to point 0' H ,  may be  expressed  as  the 
summation of bending and stretching  effects.  Thus, one can write 

' 6Y 

(Bending) (Stretching) 

where  the  integrals  are  taken from point 0 to point 0' (that is, one corrugation  leg) 
and 

S distance  measured  along  the  corrugation  leg  centerline 

\Ir angle  between  tangent to the  corrugation  leg  centerline and  a  horizontal 
line 

M = H @  - z'), bending moment at  a cross  section of the  corrugation  leg 
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2’ vertical  distance from point 0 

Ii = 1 t3 moment of inertia of a  corrugation  leg  cross  section  that is normal 12 1 
to s and  parallel to the  x-axis. In the  region of the  corrugation  flat 
segment, I .  = I and in  the  circular  arc and straight diagonal  segments 

1 f ;  I. = I 
Z C  

ti thickness of a  corrugation  leg. In the  region of the  corrugation flat 
segment, t .  = t and  in  the  circular  arc and straight  diagonal  segments 
t. = t 1 f ;  
1 c  

The (-1) in  the  bending term of equation (6)  indicates  that  the displacement of 
point 0 with respect to point 0’ is to the  left  in  figure 2 (ref. 5 ) .  

The  following relationships  between  the geometric parameters of the  corrugation 
will be useful  in  the  process of evaluating equation (6)  and others to follow: 

f = ~ ” 2 + c O s e - 2 - s i n e  R 
hc hc C hC 

--- Q - f + 2 - + 2 - e  d R 
hc hc hC hC 

Making use of the  equations (7) to (10) in  the  integration of equation ( 6 )  one 
obtains 

3 
6 H =- Hhc # 
Y EcIc Y 
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where 

IC f tc + 2- cos e + - (e + s i n  e cos e>  2 h t  
+- [” d 2 R 

hctc  c f hc hC 1 
The modulus of elasticity E is then  given by 

Y 

where u and E are,  respectively, the  effective stress and  the effective  strain of 

the  corrugated  core  in  the  y-direction. 
Y Y 

Evaluation of Poisson Ratio v 
Z Y  

A s  illustrated  by  figure 2 ,  again,  the  vertical dispacement of point 0 with respect 

to point 0’ under  horizontal  loading H , 6:, may be  written 

(Bending)  (Stretching) 

where y’ is the  horizontal  distance from point 0 ,  and  the (-1) in  the  bending term 
indicates  that  the displacement of point 0 with respect to point 0’ is downward (ref. 5) . 
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After integration  and making use of relationships (7) to (10) equation (15) 
becomes 

where 

B H =  sin 0 cos 8 + z 3 hc 

IC d 

hctc 
-T( 2- hc sin 8 cos 0 + 

The  Poisson ratio v which is associated with loading  in the  y-direction 
Z Y  ’ 

only is then  given  by 

BH 
- P  -” z 

hc BH 
Y 

where E is the  average  strain  in  the  z-direction of the  corrugated  core. z 

Evaluation of Modulus of Elasticity EZ 

Figure 3 shows  a free body diagram of the corrugation  leg  subjected to a  vertical 
(sandwich  thickness  direction)  loading, F ,  per unit  width in the x-direction. The 
loading is concentrated at points 0 and 0’. Neglecting  the Timoshenko beam shear 
deformation, as before  the  total  vertical displacement 6:y of point 0 with respect to 
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point 0' may be  written  as  the summation of the  bending  and  stretching  effects. 
Thus, 

(Bending)  (Stretching) 

where the (-1) in  the  bending term indicates  that  the movement of point 0 with 

respect to point 0' is upward  (ref. 5 ) .  In this  case, M = F - y' . Taking 
equations (7) to (10) in  the  integration of equation ( 2 0 1 ,  we then  obtain 

( 2  ) 

where 

+ - 2 - e - 4- (1 - C O S  e)  + (e - sin 8 COS e )  [ ('cy h: 

R b  

hC 1 
I C  

+ p+ sin e + - (e - sin e cos e)  
hCtC 

2 R 

C hC 1 
The modulus of elasticity EZ is then  given  by 

R 

- Ec I C  

B Z  phc 

-" 
F 2  

where o is the  effective stress in  the  corrugated  core  in  the  z-direction. 
2 
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If the  vertical  loading F is distributed  over  the  corrugation  flat  segment,  then BZ F 
in equation ( 2 2 )  will  have  the form 

It is apparent  that  the only  difference  between  equations ( 2 2 )  and ( 2 5 )  occurs  in 
the  second  term on the  right  side of each  equation  (underlined). Equation ( 2 5 )  will 
not be  used  in  the  subsequent  analyses. 

Evaluation of Poisson Ratio v 
Y Z  

From figure 3 ,  the  horizontal  displacement, tjF of point 0 with respect to point 0' 
Y '  

under  the  concentrated  vertical  loading, F is given  by 

YL Y J 

(Bending)  (Stretching) 

where  the (-1) in  the  integrand of the  bending term  defines  the  direction of movement 
of point 0 with respect to point 0' to be to the  right  in  figure 3 (ref. 5 ) .  

After integration of equation ( 2 6 )  with relationships (7) to (10) taken  into  ac- 
count,  it follows that 

3 
tj F = -  Fhc BF 

Y EcIc Y 

where 

B = B  F H  
Y Z  
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Then  the  Poisson 
only, is given  by 

ratio v , which is associated  with  loading in the  z-direction 
Y Z  

E” 
C 

If F is distributed  over  the  corrugation  flat  segment,  then BF in equation ( 2 8 )  is 
modified to Y 

All terms are identical to those  in equation (17) except  the  second  term on the 
right  side  (underlined).  Again,  equation (31) will  not be  used  in  the  subsequent 
analyses. 

For  the  concentrated  vertical  loading, F ,  the  following  relationship  holds: 

V V 
Y Z  - ZY 

Y E* E 

However,  the  relationship  does not apply to a  distributed  vertical  loading. 

Evaluation of Shear Modulus G 
Y Z  

Figure 4 shows the  transverse  shear deformation of a  corrugated  core  unit 
element OAO’B subjected to shearing  stress, T, at the four edges of the  unit  element. 
This is equivalent to the  application of concentrated  vertical and  horizontal  loads 

12 



( F  = zhc and H = z p )  at  the two. ends of the  corrugation  leg 00'. A s  a result, point 

0 is displaced to position O F H  with the  vertical and  horizontal  displacements 6z and 
6 If force F is acting  alone,  point 0 will  move to point 0 with  the two displacement 
components 6 and 6:. Alternatively, i f  force H is acting  alone,  point 0 wil l  move to 
position 0 with  displacements 6H and 6z. Displacements 6 and 6z may be  expressed 

Y '  F F 

Y H 
H Y  Y 

6 = 6  - 6  H F  
Y Y Y  

6 = 6   - 6  F H  
z z z  

and the effective shear  strain, y , can be written 

(33) 

(34)  

Substituting  equations (33 )  and (34)  into equation (35) and using  equations (11)  , 
( 1 6 1 ,  (21) ,  and (27) ,  the  shear modulus G can  then be  written  in  the form 

Y Z  

and B in equation (36)  reduce  respec- when t equals tc , the  expressions BZ , BZ , 
tively to the  expressions B 3 ,  B4, and B6 in  reference 4. 

H 
f Y 

Evaluation of Poisson Ratio v 
YX 

The  Poisson ratio v is associated  with  loading  in  the  x-direction  only.  The 
YX 

effective strain of the  corrugated  core  in  the  x-direction , cX, is given by 

U x - OXC 

x Ex EC 

& ="- 
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where u is the  effective stress in the  corrugated  core  in  the  x-direction  and u is 
the stress  in the  corrugation  leg  in  the  x-direction.  The two stresses ax  and uxc are 
related as follows: 

X xc 

where equation (1) is used. 

The effective strain  in the  y-direction of the  sandwich core, E due to loading in 
Y’ 

the  x-direction  can be  written 

E = - ‘dp cS cos $ d s  
Y P  (39) 

where E is the strain  in the s-direction  due to  loading in the  x-direction  and is given 
by 

S 

E = V E  s c x  (40) 

where v is the  Poisson ratio of the  sandwich core  material. 
C 

After the  integration of equation (39) with  equations (37) and (40) taken  into 
consideration 

v u  c  xc = -  
Y EC 

From equations ( 3 7 )  and (41) 

E 
v -  - - Y = v  

YX E C X 

Evaluation of Poisson Ratio v 
XY 

The Poisson ratio v is associated with loading in the  y-direction  only.  Using 
XY 

equation (11) the effective strain  in the corrugated  core  in the  y-direction E , is 
given  by Y 

€iH H hc B 3 H  
& =Y= Y 

Y P P EcIc 

14 
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The strain  in  the  s-direction, E ~ ,  due to loading H is given by H 

H - H cos 9 
' S  - Ecti (44) 

The  effective strains  in  the  corrugated  core  in the x-direction,  can  be obtained 
from the  integral 

2 
E X = -ki d s  (45) 

where is the  strain  in  the  corrugation  leg  in the  x-direction  due to loading H and 
is given by 

E = v  E 
H 

xc c s 

Substituting  equations (44)  and (46)  into  equation (45)  and integrating, 

& = -  
X $," 1- - 91 

The  Poisson ratio v is then  given by 
XY 

E 
X v =  

XY EY 
" 

- "- P2 [ 1 - f  .( 1" ;) 
Qtc h3 BH 

C Y  

The  Poisson ratios v and v are  related  as follows: 
XY YX 

(47) 

If t equals t or if the  superplastic deformation is constant volume (that is i f  the 
condition of equation (4) is imposed)  then we have  the  familiar  expression 

f C 

V V 
XY - YX 
E 

Y EX 

(51) 
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Evaluation of Poisson Ratio vzx 

The  Poisson ratio vzx is associated with loading in the  x-direction  only.  The 
effective strain of the  corrugated  core,  in  the z-direction , .sZ , can be  written 

After substituting  equations (37) and (40) into  equation (52) and  integrating, 

v ( T  c  xc 

C 

E = -  z E 

From equations (37) and (531 ,  the Poisson ratio v Z x  can  be  written 

(53) 

Evaluation of Poisson Ratio v 
X Z  

The  Poisson ratio v is associated with loading in the  z-direction only. From x2 
equation (21) ,  the corrugated  core  strain  in the  z-direction , E = ,  is given  by 

In addition , the corrugated  core  strain  in the  x-direction , E is expressed as 
X '  

where is the  strain  in  the  corrugation  leg  in the  x-direction  due to loading in 

the  z-direction , and is given  by 
xc 

u F 
xc c s E = v  E (57) 
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where is the corrugation  leg  Strain  in F 

given  by 
the s-direction  due to loading F ,  and is 

F sin + 
Ect i  

The  Poisson ratio vxz is then  given  by 

The two Poisson ratios vzx and vxz can be  related  by  the equation 

If t equals tc or if  f equals 0 ,  then equation (61) becomes f 

For the  superplastic  incompressible  deformation, equation (61) can be  reduced to 

ELASTIC  CONSTANTSFORHONEYCOMBCORE 

A s  shown in  figure 5 ,  the honeycomb core is made up of corrugated  strips join- 
ed together  at  the  corrugation  flat  segments, with the corrugation  axis  oriented 
normal to the  sandwich middle surface.  Therefore,  by  taking the  coordinate 
system shown in  the  figure,  the  results obtained  for  the previous  case can be 
applied  directly to the honeycomb core if  tc is set  equal  to t 

f '  

17 



EFFECT OF FACE  SHEETS ON MODULUS  OF  ELASTICITY EZ 

The  following  calculations are  presented to evaluate the effect of the face sheets 
on the  stiffness in the  z-direction E Z  when  bonded to the  corrugated  core. Let 

Ez denote  the  modulus of elasticity  in  the  z-direction  when  the deformation of the 

corrugated  core is constrained  by  the face sheets. 

- 

A s  shown in  figure 6 i f  the corrugation  leg is not constrained  by the two face 
sheets  and is subjected to loading H and F point 0 wil l  move to O1. The  horizontal 

and  the vertical components of this displacement are  given  by  equations (27) and 
(2 1) respectively. 

3 
6 =- F Fhc BF 

Y EcIc Y 

If the  corrugation  leg is constrained  by the face sheets point 0 will  move only to 
point 02 .  This  constraint is equivalent to bringing point 0 back from position O1 to 
position 0 by means of horizontal  force H .  2 

The  horizontal  and  vertical components of the  displacement 0102 due to H are 
- 

given  by  equations (11) and (16) respectively. 

3 
6 H Hhc BH 

Y EcIc Y 

The  horizontal component of the  displacement m2 is due to the  compression 
Y '  

(neglecting  buckling) of the face sheets and can be  written 

18 
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where ts is the  thickness of the  face sheets. From the  relation 

- 
6 = 6   - 6  F . H  

Y Y Y  

The vertical component FZ of the displacement m2 is given  by 

- 
6 = 6   - 6  F H  

z z z  

which, with reference to equations ( 2 1 )  and (16)  becomes 

F 

- - EZ -~ 

l - v  v 1 
YZ Z Y  

1 +  P I C  
2 t s h c  B 3 H  

Y 

indicating  that the stiffness of the  corrugated  core  in  the  z-direction is greatly 
enhanced  when  the  core is bonded to the face sheets. 
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CORRUGATED CORE BENDING STIFFNESS 

The  bending  stiffness  in  'the  x-direction of the SPF/DB corrugated  sandwich 
core may be  written 

where 

DX 

I C  

- 

bending  stiffness in the  x-direction  per  unit  width of a beam cut from the 
SPF/DB corrugated  sandwich  core 

moment of inertia  taken about  the horizontal  centroidal  axis of the 
corrugation  cross section per  unit  width of the  corrugation  cross section 
parallel to the  yz-plane or 

The bending  stiffness  in  the  y-direction of the SPF/DB corrugated  core is very 
small and is of the  order of Ecli. 

NUMERICAL RESULTS 

In obtaining  the  numerical  values for the  effective elastic  constants of the 
SPF/DB corrugated  core  it  was assumed  that R was  equal  to t and  that  the 

corrugated  core  material  was  a titanium alloy 6AZ-4V having the  following physical 
properties: 

f 

E = ETi = 1.1 X 10" N / m  (16 X 10 psi) 2 6 
C 

G = GTi = 4 . 3  X 10 N / m  (6 .2  X 10 psi) 10 2 6 
C 
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v = V T i  = 0 . 3 3  
C 

= 4.47  gr/cm (0.16 lb/in ) 
3 3 

PC = PTi 

where p, is the  density of the  core  material. 

Figure 7 shows  the  variation of the  corrugation  angle, 8 ,  with  the  thickness of 
the diagonal segment, t c ,  after  superplastic  expansion. It is apparent  that tc is 

insensitive to changes  in t /hc .  f 
Figures 8 to 16 present  graphs  for  evaluating  the major  effective  elastic  constants 

for  the SPF/DB corrugated  core.  The  elastic  constants  are  plotted  against p / h c ,  

with t /hc  and 8 as  parameters. Envelopes of optimum points or envelopes of 
limit points are  also shown in  the  figures.  These  envelopes  correspond to the  case 
when f = 0 (that is,  triangular  truss  core). 

f 

Figure 8 shows that E is sensitive to the  values of t and 8 ,  but  relatively 
insensitive to the  change of p (or f )  , and that E is very  small.  This  indicates  that 
the  corrugated  core  has  negligible  stiffness  in  the  y-direction. 

Y f 
Y 

Figure 9 shows that E is also  very  small, and is sensitive to the  changes of both 
Z 

t and p ,  but is insensitive to the  change of 8. For  a  given 8 ,  E Z  reaches  its 
maximum (or optimum) value  at f = 0 .  A s  will  be  seen  later,  the  lateral  (that is, 
y-direction)  constraint  provided  by  the face sheets  will  increase  the  value of EZ by 

several  orders of magnitude. 

f 

The  shear modulus G shown in  figure 10 is also  sensitive to 8. A s  is expected, 
XY 

G increases with increasing  values of p (or f )  . 
XY 

Figure 11 shows that G is very  sensitive to the  values of p (or f )  . For  a  given 
YZ 

8 ,  Gyz reaches maximum value  at f = 0 .  Because of the  steepness of the curves, a 
slight  increase of f above 0 drastically  reduces  the  value of G 

Y Z '  

Figure 1 2  shows that GZx decreases with increasing  values of p (or f ,  and  that 
maximum value  for  a  given 8 occurs when  the corrugation  degenerates  into  a 
triangular  truss  core. 

The  value of Poisson ratio v , shown in  figure 13, is small. It is sensitive to 
Xy 

the  values of t and 8 ,  and  increases  as p increases. f 
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Figure 14 shows  the  plots of Poisson ratios v and v . It is apparent  that 
YZ Z Y  

v is greater  than  unity.  This is quite common in  the  truss  type of structure, 
which is not a  continuum.  For  example, if a  square  truss is pulled  diagonally  into 
a rhombic shape,  the Poisson  ratio will be  greater  than  unity. Both v .and v 

are  sensitive to both p and 0 ,  but  insensitive to the  value of t 

YZ 

YZ ZY 

f ‘  
Figure 15 shows  that  the  value of Poisson ratio vxz is also small. It is quite 

sensitive to the  change of t and less  sensitive to the  values of p and 0 .  f 

Figure 16 presents  graphs for evaluating  the modulus of elasticity EL. Because 

of the  constraint of the face sheets, Ez is several  orders of magnitude larger  than 
E 2 .   E Z  is sensitive to the  change of p at low values of t 

- 
f ’  

Figure 17 shows  plots of the  bending  stiffness, DX of the SPF/DB corrugated 
9 

ECh: core. In the plots, D is normalized by D = - (bending  stiffness  per  unit 
X c 12 

width of the  solid  core  with  height hc) . For  given  values of 0 and t the 

triangular  truss  core  has  the lowest bending  stiffness. 
f ’  

For comparison,  corresponding  graphs  evaluating  the  elastic  constants  for 
the honeycomb core  are  also  presented  (figs. 18 to 26) . All  the  elastic  constants 
have  been  normalized  and may be  used for  any material,  except  for G y z ,  vxy , and 
v which are  for titanium only.  For  a  material  other  than  titanium, G v 
XZ ’ Y Z  Xy’ - 

E CiTi v and v (figs. 2 2  2 4 ,  and 26)  must be multiplied by - - - , and -¶ 

V 

x2 G ETi’  v T i  V T i  
respectively. 

COMPARISON WITH HONEYCOMB CORE 

This section  compares  the  stiffness of the SPF/DB titanium alloy corrugated 
core with that of the honeycomb (aluminum or titanium)  core when  both types 
of sandwich  core  have  the same density. 

Let ( l S p  and ( ) H C  denote  respectively, the quantities  associated  with  the 
SPF/DB corrugated  core  and  the honeycomb core.  The  densities, p ,  of these two 
types of sandwich  core may be  written 
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pHC = ($) p c  
HC 

where p ,  is the  density of the honeycomb core  material. From the condition 

pSP - pHC ' 
parameter t / h c  for  the SPF/DB core  as follows: 

- equations (73)  and (74) may be related to find  the  geometric 

f 

PC 

S P  

A typical honeycomb core  for application to high  speed  aircraft is character- 
ized  by  the following geometric parameters: 

tc = t f *  R ,  e 600 

((" 0 . 4 0 5 3  
HC 

(74) 

(q)Hc R = 1 . 5 6 0 0  

(k)Hc = 0 . 0 1 4 7  

(e) = 0 . 9 8 2 5  

HC 

For the aluminum honeycomb core, the  material  properties  are: 

Ec = EAz = 6 . 8 9 4 8  X 10 N/m (10 X lo6  psi) 10 2 

(79) 

(80) 

G = GAZ = 2 . 7 5 7 9  X 10" N/m2  (4 X l o 6  psi) 

v = v  = 0 . 3 6  

C 

c AZ 

PC - - pAz 2 . 7 7  gr/cm (0 .100 lb/in3) 3 

23 

I 



Using  the  numerical  values  given  above,  equation (75) yields  the following 
geometric parameters  for  the SPF/DB corrugated  core  corresponding to 

(& = 0.0147. When the honeycomb core is aluminum, 

(8) = 0.0146 

S P  

When the honeycomb core is titanium, 

(8) = 0.02334 

S P  

From figures 18, 21,  and 23 the  three major elastic  constants for the honeycomb 
core, E and G Z x ,  may be replotted  against t /hc for 8 = 60” and p / h c  = 0.9825 

(eq. (80)) . This is shown in  figure 27 .  
x ’  G x y ’  f 

Likewise, from figures  16, 11, and 1 2  the optimum values of the  corresponding 
elastic  constants  for  the SPF/DB corrugated  core, E z ,  G and GZx, may be 

replotted  against t /hc for 0 = 60” (fig. 28).  
Y Z ’  

f 

Because of the  different  orientations of the  coordinate  axes of the two types of 
sandwich  cores E G , and GZx (honeycomb core moduli)  should be compared 
respectively with their  counterparts, E G and GZx (SPF/DB corrugated  core 

moduli) . 

x’ x y  
2 ’  y z ’  

is insensitive to the existence of the  face sheets,  it is used to 

compare with( zz) , which is insensitive to the  change of thickness of the  face sheets. 
S P  

Given that E = E and Gc = GAZ for the aluminum honeycomb core  and  that c A1 
E = E and G = G for  the  titanium honeycomb core,  figures 27 and 28 allow the 

comparisons  between  the  elastic  constants as shown in  tables 1 and 2 .  
c Ti c Ti 

From the  tables  it becomes apparent  that  the  stiffness  in the  sandwich  thickness 
direction of the SPF/DB corrugated  core is lower  than  that of the honeycomb core 
(aluminum or  titanium). The transverse  shear  stiffness of the SPF/DB corrugated 
core is greater  than  that of the honeycomb core. 
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CONCLUDING REMARKS 

In this  report  the formulae  and related  graphs  are developed  to evaluate  the major 
effective elastic  constants for a  superplastically formed/diffusion-bonded (SPF/DB) 
corrugated  sandwich  core. Assuming uniform thickness of the  corrugation  leg, the 
formulae were  used to evaluate  the effective elastic  constants for a honeycomb sand- 
wich core. 

A comparison of the  stiffness of the two types of sandwich  core  was  made  under 
conditions of equal  sandwich  core  density. It was found that  the  stiffness in the  thick- 
ness  direction of the optimum SPF/DB corrugated  core  (that is,  triangular  truss  core) 
was  lower  than  that of the honeycomb core, and that  the former  had a  higher  trans- 
verse  shear stiffnebs than the latter.  Alternatively, for  the same transverse  shear 
stiffness, the SPF/DB corrugated  core had lower core  density  than  the honeycomb 
core,  but  its  thickness  stiffness  was lower  than that of the honeycomb core. 

For the SPF/DB corrugated  sandwich  core, it was found that  increasing the 
length of the  crest or trough  increased the bending  stiffness  but  reduced  the 
transverse  shear  stiffness. 

Dryden  Flight  Research  Center 
National  Aeronautics  and  Space  Administration 

Edwards,  Calif.,  June  27,  1979 
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TABLE 1 .-COMPARISON  BETWEEN ELASTIC  CONSTANTS  FOR 
ALUMINUM HONEYCOMB  CORE  AND SPF/DB  TITANIUM  CORRUGATED  CORE 

[Psp = PHCI 

I Aluminum honeycomb core 

5 'f = 0.0147,  e = 600 

E x  = 14.4790 X 10  N/m 8 2 

(2.1 X 10  psi) 5 

G = 2.4821 X 10   N /m 8 2 
X y  

(3 .6 X 10  psi) 4 

= 2.5924 X 10  N/m 

(3.76 X l o 4  psi) 

8 2 
GZX 

SPF/DB  t i t an ium corrugated core 
__ ~ ~. . . ~  

t 
""____ ~ _ _  

f = 0.0146, e = 600, f =  o 
hc 
- 
EZ = 8.2737 X 10  N/m2 8 

(1.2 X 10  psi) 5 

G = 2.7358 X 10 N/m 8 2 

(3.968 X 10  psi) 

8 2 

4 

Y Z  4 

= 4.7022 X 10  N/m 

(6.82 X 10  psi) 
G Z X  

"" 

0.57 

1 .10  

1.81 

TABLE 2 .  -COMPARISON  BETWEEN  ELASTIC  CONSTANTS  FOR 
TITANIUM  HONEYCOMB  CORE  AND SPF/DB  TITANIUM  CORRUGATED  CORE 

[Psp = pH(+ 

Ti tan ium  honeycomb core 

t 
f = 0.0147,  e = 600 
hC 

Ex = 23.1664 X 10  N/m 8 2 

(3.36 X l o 5  psi) 

G = 3.8473 X 10  N/m2 8 
=cy 

(5.58 X l o 4  psi) 

= 4.0182 X 10   N /m2  8 
G*X 

(5.8280 X l o 4  psi) 

SPF/DB  t i t an ium corrugated core 
" ~ 

t R = 0.02334,  e = 600, f =  o 
C - 
EZ = 13.4586 X 10  N/m2 

(1.9520 X 10 psi) 

8 2 

4 

8 

5 

G = 4.5740 X 10  N/m 
Y Z  

(6.8340 X 10  psi) 

= 7.5663 X 10  N/m 8 2 
GZX 

(1.0974 X l o 5  psi) 

0 .58  

1 .22  

1 .88  
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Figure 1. Geometry of superplastically  formed/diffusion-bonded  corrugated 
core  sandwich plate. 
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Figure 5. Geometry of honeycomb  core  sandwich plate. 
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Figure 8. Concluded .  
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38 



Figure 11. Continued. 
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F i g u r e  16.  Modulus  of e l a s t i c i t y  E, for 
SPF/DB c o r r u g a t e d  core. R = t f .  
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Figure 17. Continued. 
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F i g u r e  20. Concluded. 
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Figure 22.  Shear modulus Gyz for honeycomb core. 
R = tc = t f e  
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core. R = t, = tf. 
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